Derivations of Group Algebras and Hochschild Cohomology

نویسندگان

چکیده

This article is based on the author’s talk at international conference dedicated to memory of Professor B. Yu. Sternin (Moscow, November 6–9, 2018). The Hochschild homology and cohomology a group algebra can be described via classifying space adjoint action groupoid under suitable assumption finiteness supports groups. difference between leads correction results in D. J. Benson’s book Representations (vols. I–II, Cambridge Univ. Press, Cambridge, 1991).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-injective Algebras and the Second Hochschild Cohomology Group

In this paper we study the second Hochschild cohomology group HH(Λ) of a finite dimensional algebra Λ. In particular, we determine HH(Λ) where Λ is a finite dimensional self-injective algebra of finite representation type over an algebraically closed field K and show that this group is zero for most such Λ; we give a basis for HH(Λ) in the few cases where it is not zero.

متن کامل

Hochschild Cohomology via Incidence Algebras

Given an algebra A we associate an incidence algebra A(Σ) and compare their Hochschild cohomology groups.

متن کامل

Hochschild Cohomology of Group Extensions of Quantum Symmetric Algebras

Abstract. Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When this bimodule algebra is a finite group extension (under a diagonal action) of a quantum symmetric algebra, we give explicitly the graded...

متن کامل

Hochschild Cohomology of Algebras: Structure and Applications

Speaker: Petter Andreas Bergh (NTNU) Title: Hochschild (co)homology of quantum complete intersections Abstract: This is joint work with Karin Erdmann. We construct a minimal projective bimodule resolution for finite dimensional quantum complete intersections of codimension 2. Then we use this resolution to compute the Hochschild homology and cohomology for such an algebra. In particular, we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in mathematics

سال: 2021

ISSN: ['2297-024X', '2297-0215']

DOI: https://doi.org/10.1007/978-3-030-37326-9_16